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Precise estimation of local stress profiles in individual phases of a fiber reinforced metal
matrix composite is a crucial concern for design of composites. Stress profiles are
significantly affected by plastic relaxation of soft matrix. In this work, an analytical model
was developed to compute local stress profiles in individual phases of fibrous metal matrix
composites. To this end, embedded cell cylindrical composite model was applied in which
a layered concentric cylinder consisting of a fiber-, matrix- and homogenized composite
layers was used. Mean field micromechanics was integrated into the conventional elasticity
solution process so that micro-macro dual scale analysis could be performed. The algorithm
was formulated in an iterative incremental structure which was able to perform plastic
analysis. This also allows temperature dependence of flow stress to be considered. Taking
copper-SiC system as a reference composite, stress profiles were obtained for mechanical
and thermal loading cases. For comparison, independent finite element analyses were
carried out for two different unit cell models. Excellent agreement between analytical and
numerical solutions was found for the mechanical loading case even for plastic range. In
the case of thermal loading, however, plastic solutions revealed notable difference in
quantity, especially for the axial stress component. C© 2004 Kluwer Academic Publishers

1. Introduction
Fiber reinforced metal matrix composites (FRMMCs)
are being considered as a candidate material group
for several advanced structural applications, since
they possess significantly extended creep resistance,
strength and dimensional stability [1]. The ultimate
load carrying capacity of the composites will be limited
by progressive plastic flow of matrix or by clustering
of fiber fracture [2, 3].

Accurate determination of stress states being gen-
erated in individual phases of a FRMMC is a crucial
concern to understand the mechanisms of microstruc-
tural damage modes. For instance, plastic ratchet-
ing and void formation in matrix are attributed to
repeated reverse of deviatoric stresses and triaxial-
ity of principal stresses, respectively [4]. On the
other hand, interfacial debonding and fiber fracture
are ascribed to fracture mechanical stress intensity
[3].

In the case of composite with ductile matrix, stress
profiles will be significantly affected by plastic relax-
ation of soft matrix, especially at elevated temperatures.
Hence, incorporation of plasticity into mechanics-
based damage prediction is mandatory. In the following,
we assume that plastic yield to be the most dominant
factor of stress relaxation and other inelastic effects to
be negligible.

∗Author to whom all correspondence should be addressed.

Diffraction techniques using X-ray or neutron beam
have been the most commonly applied experimental
tools for the measurement of residual stresses gener-
ated in a composite material [1]. However, due to low
spatial resolution and practical difficulties concerned
with in-situ measurement during loading, its applica-
tion fields have been rather limited. This suggests that
complementary theoretical evaluation is required for
complete assessment of stress states in a FRMMC.

Numerical analysis based on the finite element
method would provide us with relatively accurate solu-
tion when the used model is realistic enough. In the case
of complex loading or irregular fiber array, three dimen-
sional models or the method of representative volume
element should be used, which may be quite costly in
certain case [1, 5].

Within the framework of analytical studies several
approaches have been suggested for elastic fibrous com-
posites in which various elastic models of load transfer
were used. Especially, the mechanics models formu-
lated on the basis of the Eshelby transformation tensor
or those based on the conventional procedure of elas-
tostatics have formed the main stream [1, 6].

Exact stress solutions were obtained for single-fiber
elastic composite systems either with infinite matrix
or with bounded matrix. Method of the Eshelby trans-
formation tensor as well as that of the conventional
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elasticity were successfully applied [7–10]. It was
proved that these two independent analytical ap-
proaches produced identical or nearly the same results
regardless of loading nature, i.e., for both thermal and
mechanical load cases [1, 7].

However, the elastic stress solutions for single-fiber
systems combined with infinitely extended matrix are
valid only for a composite with extremely small fiber
content. To include the constraint effect of neighbor-
ing fibers which would become more conspicuous as
fiber content increases, the single-fiber model may be
modified by replacing the infinite matrix with bounded
finite matrix so that the latter system would have the
same fiber content as the multi-fiber counterpart under
consideration. This modification can be applied to one
of the aforesaid analytical methods [1].

But, solutions for a single-fiber system with bounded
matrix would not exactly represent the realistic stress
profiles occurring in a many-fiber system having the
equivalent fiber content. This can be easily understood
by noting that the approximation based on the single-
fiber system fails near the outer boundary of matrix
layer due to free surface effect which would not exist
in the interior of a real composite [11]. For correction
of this problem, an additional boundary condition has
to be imposed onto the matrix surface [12].

In the case of multi-fiber composite systems, mi-
cromechanical theories based on the Mori-Tanaka mean
field method have drawn increasing attention in the last
two decades [13]. These Mori-Tanaka type formula-
tions can provide a closed form solution for an elas-
tic composite having a simple geometry and low fiber
content (less than approximately 20 vol%). It was also
shown that they could be extended to plastic regime
[14]. This allowed overall plastic behavior to be pre-
dicted in global scale. However, the mean field solu-
tions are insufficient for precise determination of local
stress profiles, since stress components are averaged in
each phase volume. Mean field methods have an intrin-
sic restriction for determination of local stress profiles.

Mikata and Taya developed a modified single-fiber
composite model in which a layered concentric cylinder
composite was considered [7]. Their system consisted
of a fiber, matrix and surrounding effective composite
media forming a three layer system (actually, they in-
cluded an additional layer of fiber coating in their work).
In this paper, we term this kind of geometrical model
‘embedded cell cylindrical composite model’ (ECCC
model), where the term ‘cell’ stands for the domain oc-
cupied by fiber and matrix. In their work, the outermost
effective layer was assumed to be infinite.

The stress solution was derived from a conventional
method of elasticity. To obtain the effective properties
of homogenized composite layer, they used the classical
rule of mixture (by Voigt or Reuss).

Geometrical analogy can be easily found between
the ECCC model and the generalized self-consistent
model, an extended version of the classical self-
consistent method [15]. It should be noted that the latter
used a self-consistent mean field formalism to com-
pute the effective stiffness of whole composite system
whereas no micromechanical method was employed in

the former model. It was pointed out by Warwick and
Clyne that the use of effective properties for compos-
ite layer is not rigorous [11]. In addition, this concept
is not flexible in its form for the extension to plastic
formulation.

The aim of present work is to develop an analytical
model with which the constraint effect of surrounding
fibers and the effect of plastic flow of matrix can be
included in a consistent manner.

To this end, the elastic ECCC model of Mikata
and Taya was modified by application of mean field
micromechanics which replaced the rule of mixture
method. In addition to determination of effective prop-
erties of composite layer, dual scale analysis was
achieved by the micromechanics technique. Further, in-
cremental computation was performed to include non-
linear nature of matrix yield.

Taking copper-SiC system as a reference FRMMC,
stress profiles were calculated for mechanical and ther-
mal loading cases. The results were compared with
those of FEM analysis carried out for unit cell models.

2. Model description
The ECCC model to be formulated in this work is based
on a concentric multi-layered cylindrical geometry with
axial symmetry. In Fig. 1, a three layer system is illus-
trated schematically. It consists of a fiber, matrix and
effective composite layer. In terms of ECCC model the
domain occupied with the fiber and the matrix being
surrounded by the effective composite layer forms a
cell.

Elastic part of the analytical framework of present
model is not much different from that of conventional
elastic solutions derived for many layer systems sub-
jected to thermo-mechanical loads. In this work, the
elastic solution algorithm of Warwick is used, since it

Matrix

Composite

Fiber

Cell

Figure 1 Schematic illustration of ECCC model geometry showing
a layered concentric composite cylinder. This cylinder consists of a
fiber, matrix and effective composite layer. Micro-macro dual scale
analysis is performed in the effective composite layer via mean field
micromechanics.
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is written for the most general case of arbitrary number
of layers [11].

Characteristic feature of present model is that a mi-
cromechanical method was integrated into the forego-
ing elastic solution procedure. Within this hybrid proce-
dure stress analysis could be performed on dual scales
(i.e., micro and macro) for the effective composite layer.

This concept is visualized in Fig. 1 using a fictitious
microscope. Matrix plasticity was taken into account
by means of Euler backward incremental integration
scheme. The combination of dual scale analysis with
Euler backward incremental integration allowed self-
consistent stress analysis.

The applied micromechanical method was based on
the work of Pettermann [16]. His algorithm is an elasto-
plastic version of the originally elastic Mori-Tanaka
type mean field theory formulated by Benveniste [17].

3. Computational procedure
Structure of the computational procedure is plotted in
Fig. 2 in a simplified form. This flowchart indicates the
linkage of the three separate modeling units, i.e., the
elastic ECCC module, micromechanics module and the
plasticity module, respectively. In Fig. 3, a more de-
tailed description of the procedure is presented. The
mathematical steps explained in Appendices A and B
are systematically illustrated. The thick arrows indicate
the main stream of the computation while the thin one
stands for data exchange or substitution of results.

First, all necessary data (material properties, geom-
etry) are input via separate data files. Temperature de-
pendence of matrix flow stress can be also considered.
With input of specified load increment (either mechan-
ical or thermal) and of prescribed total load, the first
incremental step of computation is triggered.

In the first module, elastic stress profiles are de-
termined for a given composite system by means of
Warwick’s algorithm. Mathematical steps of this algo-
rithm are written in Appendix A. In this first stage the
Eshelby’s micromechanics is already at work produc-

Solving process by elastic formulation 

Macro scale stress solution

Micromechanical process

Computation of matrix plasticity

Equilibrium checking

Micro scale stress solution

Next load increment

Initial load increment , Input data

 

Figure 2 Conceptual flowchart showing the structure of computational
procedure. Three separate modeling units, that is, elastic ECCC module,
micromechanics module and plasticity module are indicated.

Static equilibrium

Kinematic relations

Constitutive equations

Differential equations

Initial loads

Material properties

Micromechanics:
Effective stiffness

System of linear equations

Numerical matrix computation

General solution form

Undetermined stress, displacements

Stress solution
 (macro-scale)

Micromechanics:
Strain concentration tensor

Boundary 
conditions

Stress solution
 (micro-scale)

Yield criterion for
matrix plasticity

Return mapping Euler backward
iteration

Next load increment

Updated stress

Global equilibrium check

Incremental loop

Figure 3 Detailed description of the algorithm. Thick arrows indicate
main stream of the computation while thin one stands for data exchange
or substitution of results.

ing the effective thermo-elastic composite properties
which are used as input data for elastic ECCC model.

In the second module, the local mean field stress in
the matrix of the homogenized composite layer is cal-
culated from the foregoing global elastic solution using
the stress- or strain concentration tensor of Benveniste’s
micromechanics model.

In the last module, yield criterion is checked for the
current total stress state in the matrix of the composite
layer as well as in the matrix of the cell. The stress level
in both regions should be identical. Here the elastic
stress increment is considered as elastic predictor in
terms of radial return mapping method which is a kind
of Euler backward incremental integration method [18].

When the yield criterion is satisfied (that is, when
the predictor vector ends outside of matrix yield sur-
face), stress updating is performed according to the ra-
dial return mapping algorithm. When updating of the
matrix stress state is completed, all other micromechan-
ical state quantities have to be updated too so that these
quantities have proper instantaneous values after plastic
relaxation of matrix.

This step must be carried out by an internal iteration
process due to characteristic Euler backward response
of macroscopic composite strain to updating of micro-
scopic matrix strain. Global force equilibrium should
be checked again after stress updating. If existing, offset
stress should be reduced by modifying the final matrix
stress vector on the yield surface in order that the force
equilibrium is achieved within a given tolerance.

The procedure is repeated in subsequent load incre-
ments until the prescribed total load is reached. The
total matrix stress is determined by superposition of
the elastic stress increment (predictor) obtained from
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current elastic ECCC analysis onto the instantaneous
stress state delivered from the previous increment.

After onset of plastic flow, the Eshelby tensor should
be estimated numerically due to the matrix anisotropy
induced by flow. Here, the Gauss quadrature algorithm
by Lagoudas and Gavazzi was used [19]. Fundamentals
of the Pettermann’s Incremental mean field formulation
is explained in Appendix B.

4. Test calculation
To verify the performance of present model, two dif-
ferent test calculations were carried out. The loading
conditions assumed for the test calculations were as
follows:

(1) a mechanical loading in axial direction with far
field applied stress of 100 MPa,

(2) a thermal loading with uniform temperature drop
of 100◦C.

For comparison, independent finite element analyses
(FEA) were conducted. For FEA, unit cell models were
applied, since their geometry is distinct from that of the
ECCC model.

As reference material, a copper matrix composite re-
inforced with 20 vol% SiC long fibers was taken. It was
assumed that the SiC fiber (radius: 70 µm) was coated
by thin graphite layer (1 µm thick) forming a perfect
interfacial bonding to matrix. For brevity, this graphite
coating was not considered in FEA. Cross-sectional ge-
ometry of the reference composite is shown in Fig. 4.
It should be noted that the SiC fiber contains a tungsten
core (radius: 15 µm) at its center. The material proper-
ties are listed in Table I. Outer radius of the composite
was varied from 500 to 3000 µm to estimate the effect
of composite layer thickness on stress results. The spec-
ified load increment was 1 MPa for both mechanical and
thermal (conversed from temperature increment) load
cases.

In FEA, two kinds of unit cell models were used:
hexagonal and square array. Geometry of the cell cross

W Core
SiC Fiber C Coating

Cu Matrix

Composite

Figure 4 Cross-sectional geometry of the reference composite used for
the ECCC test calculation. This reference composite consisted of copper
matrix and 20 vol% SiC long fiber reinforcement. Dimensions were
as follows: tungsten core (radius: 15 µm), SiC fiber (radius: 70 µm),
graphite layer (1 µm thick), effective composite (radius: 500–3000 µm).

TABLE I Properties of matrix and fiber materials at room temperature
[1, 20]

W fiber SiC fiber Graphite Copper

Young’s modulus (GPa) 405 450 400 130
Poisson’s ratio 0.29 0.17 0.15 0.34
Coefficient of linear thermal 4.5 5.7 10 16.7

expansion (10−6/K)
Yield stress (MPa) 1050 44

(a) 

 

(b) 

Figure 5 Cross sectional geometry of the two unit cell models used for
finite element analysis (FEA) to which three dimensional models with
hexagonal and square array were applied.

sections is shown in Fig. 5. Three dimensional models
meshed with second order elements were used. Sym-
metry boundary conditions were imposed assuming in-
finite extension of the composite.

It should be mentioned that FEA for the present
ECCC model geometry was also carried out using com-
mercial code ANSYS to check the numerical perfor-
mance of the algorithm itself. No meaningful error was
found from this cross checking test.

5. Results and discussion
Predicted mechanical and thermal stress profiles for
plastic as well as elastic cases are presented in Figs 6–9,
respectively. Analytical solutions from the ECCC
model are compared with numerical solutions from
the FEA of unit cell models. Results are plotted for
three principal stress components along the radial posi-
tion starting from the symmetry axis of the composite
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Mechanical load: 100MPa (Elastic case)
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Figure 6 Predicted elastic stress profiles calculated for applied axial
stress of 100 MPa. Analytical solutions from the ECCC model are com-
pared with numerical solutions from FEA using unit cell model (hexag-
onal). Results are presented only for the cell domain.

Figure 7 Predicted plastic stress profiles calculated for applied axial
stress of 100 MPa.

cylinder up to the cell boundary (i.e., outer boundary
of the matrix layer).

Figs 6 and 7 show excellent agreement between an-
alytical and numerical solutions for the mechanical

Figure 8 Predicted elastic thermal stress profiles calculated for temperature decrease of 100◦C. Analytical solutions from the ECCC model are
compared with numerical solutions from FEA using two unit cell models.

loading even in the plastic case. Distribution of the tri-
axial stress states after relaxation could be accurately
reproduced. The local mean field stresses of matrix and
fiber in homogenized composite layer had same val-
ues as those of volume averaged stresses of matrix and
fiber in the cell, respectively. This indicates the self-
consistence of the ECCC model.

In the case of thermal loading, however, such an
exact coincidence could not be obtained. While the
elastic ECCC solution shows similarity to numerical
one (Fig. 8), plastic solution reveals notable differ-
ence, especially for the axial stress component (Fig. 9).
This may be attributed to severe thermal stress gradient
which could cause enhanced numerical errors by aver-
aging operation during mean field homogenization. The
tensile hoop stress in the thin graphite coating increased
sharply upon plastic flow of matrix. This suggests that
crack in the graphite coating would propagate along the
fiber axis direction.

It is noticed that the two unit cell models produced
nearly identical thermal stress profiles except the fiber-
matrix interface region. Actually, no difference in work
hardening rate of this composite was observed between
the two unit cell models [21]. In principle, change of
unit cell geometry can lead to a significant difference
in stress level and in global work hardening behavior
when fiber volume fraction becomes higher ( f � 0.5)
[22].

Variation of the composite layer thickness tc had actu-
ally no influence on the results in the range tc ≥ 5R (R:
fiber radius). This fact provides a guideline how much
a tensile test specimen of a FRMMC can be downsized
without inducing any deviation of stress state from that
of large size one.

6. Summary
In this work, an analytical model was developed to com-
pute local stress profiles in individual phases of fiber
reinforced metal matrix composites. To this end, em-
bedded cell cylindrical composite model was applied
in which a layered concentric cylinder consisting of a
fiber, matrix and effective composite layers was used.
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Figure 9 Predicted plastic thermal stress profiles calculated for temper-
ature decrease of 100◦C.

Characteristic feature of present model is the combi-
nation of incremental mean field micromechanics for-
mulation by Pettermann with the conventional elasticity
solution process by Warwick and Clyne. Within this hy-
brid procedure stress analysis was performed on micro-
macro dual scales. This model allowed that the con-
straint effect of surrounding fibers and plastic flow of
matrix could be considered in self-consistent way. The
temperature dependence of flow stress could be also
included.

Taking copper-SiC (long fiber) system as a reference
composite, stress profiles were obtained for mechanical
loading (axial stress of 100 MPa) and thermal loading
(cooling by 100◦C) cases. For comparison and verifica-
tion, independent finite element analyses were carried
out for two different unit cell models.

Excellent agreement between analytical and numeri-
cal solutions was found for the mechanical loading. Dis-
tribution of the triaxial stress state could be accurately
reproduced even in plastic case. In the case of thermal
loading, however, such an exact coincidence could not
be obtained. While the elastic solution showed simi-
larity to numerical one, plastic solution revealed no-
table difference, especially for the axial stress compo-
nent. This was attributed to high thermal stress gradient
which could cause numerical errors during mean field
homogenization.

Appendix A
In this appendix, a solution process of a three dimen-
sional thermo-elastic problem is given for a cylin-
drical composite consisting of N concentric material
layers [11]. It is assumed that the material properties in
each nth layer is transversely isotropic. We consider a
general load case that this composite cylinder is sub-
jected to a uniform temperature change �T and applied
stresses σor and σoz in longitudinal and in transverse
(i.e., radial) directions, respectively. Whole formula-
tion is described in cylindrical coordinate system.

In the absence of body force, the static equilibrium
equations are:
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The general thermo-elastic constitutive relations are
written as
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The linear kinematic relations between infinitesimal
strains and displacements are given by
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The axisymmetry of the model leads to following dis-
placement components

u(n)
r = un(r ) (A-5a)

u(n)
θ = 0 (A-5b)

u(n)
z = wn(z) (A-5c)

which, by Equation A-4, gives

e(n)
rr = ∂un
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r
(A-6b)
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e(n)
rz = e(n)

θz = e(n)
rθ = 0 (A-6d)

Substituting Equation A-6 into Equation A-2, one
obtains
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Inserting Equation A-7 into Equation A-1 produces the
governing differential equation in terms of displace-
ment components:
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Due to the assumption of a uniform temperature field,

dTn

dr
= 0 (A-9)

Solutions for the differential Equations A-8 take generic
forms of

un(r ) = Anr + Bn

r
(A-10a)
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The boundary conditions imposed are
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(A-11c)
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Without loss of generality we can set

Fi = 0 (1 ≤ i ≤ N ) (A-12)

From the interface compatibility conditions (A-11c, d)
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Combining Equations A-10 and A-7 gives
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Since u1(0) must remain finite for Tn = �T , B1 = 0.
Application of all boundary conditions to Equa-

tions A-10 and A-14 yields a system of 2N linear si-
multaneous equations having the form:

B = [A]C (A-15)

with vectors of 2N components

B = [b1 · ·bk · ·b2N]T,

C = [A1 · ·Ak · ·AN B2 · ·Bk · ·BN E]T

and a 2N × 2N square matrix

[A] = [ai,j].

The linear equations system (A-15) is expressed in in-
dex notation as

N∑
i=1

ak,i Ai +
N∑

j=2

ak,(n−1)+j Bj + ak,2N E = bk

(A-16)
for 1 ≤ k ≤ 2N

The individual groups of the equations which are to be
derived from a specific boundary condition are given in
the following.

From the continuity conditions (A-11c), we get N −1
equations for 1 ≤ k ≤ N − 1:
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ak,k+1 = −rk (A-17c)
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rk
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ak,N+k = − 1
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(A-17e)
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The equilibrium condition (A-11d) yields N − 1 equa-
tions for 1 ≤ i ≤ N − 1 and k = N + i
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11

r2
i

]
− Bi+1

[
C (i+1)

12 − C (i+1)
11

r2
i

]

+ E
[
C (i)

13 − C (i+1)
13

] = �T
(
β

(i)
1 − β

(i+1)
1

)
(A-18a)

ak,i = [
C (i)

11 + C (i)
12

]
(A-18b)

ak,i+1 = −[
C (i+1)

11 + C (i+1)
12

]
(A-18c)

ak,N+i−1 =
[

C (i)
12 − C (i)

11

r2
i

]
(A-18d)

ak,N+i = −
[

C (i+1)
12 − C (i+1)

11

r2
i

]
(A-18e)

ak,2N = [
C (i)

13 − C (i+1)
13

]
(A-18f)

bk = �T
[
β

(i)
1 − β

(i+1)
1

]
(A-18g)

The condition of radial traction (A-11a) gives another
equation

AN
[
C (N)

11 + C (N)
12

] + BN

[
C (N)

12 − C (N)
11

r2
N

]
+ EC(N)

13

= σor + β
(N)
1 �T (A-19a)

aN,N = [
C (N)

11 + C (N)
12

]
(A-19b)

aN,2N−1 =
[

C (N)
12 − C (N)

11

r2
N

]
(A-19c)

aN,2N = C (N)
13 (A-19d)

bN = σor + β
(N)
1 �T (A-19e)

The condition of axial traction (A-11b) gives the last
simultaneous equation

N∑
i=1

[
2C (i)

13 Ai + C (i)
33 E − β

(i)
3 �T

] (
r2

i − r2
i−1

)
= σozr

2
N (A-20a)

σozr
2
N + �T

N∑
i=1

β
(i)
3

(
r2

i − r2
i−1

)

=
N∑

i=1

2AiC
(i)
13

(
r2

i − r2
i−1

) + E
N∑

i=1

C (i)
33

(
r2

i − r2
i−1

)
(A-20b)

a2N,i = 2C (i)
13

(
r2

i − r2
i−1

)
, (1 ≤ i ≤ N ) (A-20c)

a2N,2N =
N∑

i=1

C (i)
33

(
r2

i − r2
i−1

)
(A-20d)

b2N = σozr
2
N + �T

N∑
i=1

β
(i)
3

(
r2

i − r2
i−1

)
(A-20e)

All other values of ak,j are set to naught. The unknown
coefficients An, Bn and E are then determined by nu-
merical matrix algebra.

Appendix B
In this appendix, essentials of the incremental thermo-
elasto-plastic formulation of the Mori-Tanaka mean
field theory including related fundamental relationships
are shortly summarized.

For fibrous composite materials, the global (macro-
scopic) thermo-elastic constitutive relation is given by
[17]

〈σ 〉 = E〈ε〉 + τϑ, 〈ε〉 = C〈σ 〉 + αϑ (B-1)

where E and C are the global elastic composite stiffness
and compliance matrices, respectively, α stands for the
coefficient matrix of linear thermal expansion and τ =
−Eα is the global specific thermal stress tensor. The
symbol 〈 〉 denotes the global volume averaged field
quantities.

By analogy, the thermo-elastic constitutive relations
for each phase p in micro-scale are written as

〈σ 〉(p)
tot = E (p) 〈ε〉(p)

tot + τ (p)ϑ, or

〈ε〉(p)
tot = C (p) 〈σ 〉(p)

tot + α(p)ϑ (B-2)

where 〈 〉(p)
tot denotes the phase averaged total stress state

in the phase p. The superscript p can be either matrix
m or fiber i , respectively.

In the case of thermo-elasto-plastic matrix materials,
incremental formulation is required for the microme-
chanical constitutive equations as well as for the mean
field homogenization relations. In the following, the
computational procedure to estimate the instantaneous
state quantities for the thermo-elasto-plastic case are
reviewed. The term ‘rate’ (denoted by d) is used for
infinitesimal time derivatives whereas the term ‘incre-
ment’ (denoted by �) stands for a finite increment in
the context of numerical integration algorithm.

The total averaged strain rates in microstructural
phase p can be related to far-field global averaged strain
rate by instantaneous mean field strain concentration
tensors [16]

d〈ε〉(p)
tot = Ā(p)

t d〈ε〉mech + ā(p)
t dϑ̄ (B-3)

where the subscript t denotes instantaneous state and
the subscript mech indicates mechanical component.
Ā(p)

t is the instantaneous mean field strain concentration
tensor and ā(p)

t stands for the instantaneous mean field
thermal strain concentration tensor.

The global instantaneous tangent stiffness Et is for-
mulated as

Et = E (i) + (1 − f )
(
E (m)

t − E (i)) Ā(m)
t (B-4)

and the global instantaneous thermal expansion coeffi-
cient αt is given by

αt = (Et)
−1[τ (i) + (1 − f )

(
Ā(m)

t

)T(
τ

(m)
t − τ (i))]

(B-5)

where f is the volume fraction of fibers.
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According to Benveniste’s formulation, the instanta-
neous mean field (thermal) strain concentration tensors
can be written as [17],

Ā(m)
t = [

(1 − f )I + f
[
I + StC

(m)
t

(
E (i) − E (m)

t

)]−1]−1

(B-6)

ā(m)
t = (

I − Ā(m)
t

) (
E (i) − E (m)

t

)−1(
τ

(m)
t − τ (i))

(B-7)

in which his original elastic formulation is expressed
in terms of the instantaneous state quantities. I denotes
the fourth rank identity tensor and St represents the
instantaneous Eshelby tensor. St is determined using a
numerical method developed by Gavazzi and Lagoudas
which is based on the Gaussian quadrature [18]. Similar
expressions of the instantaneous strain concentration
tensors exist for fiber.

We adopt the numerical integration strategy sug-
gested by Pettermann [16]. The core part of this al-
gorithm is the radial return mapping step [19] for stress
updating after onset of plastic yield. For the return map-
ping process, Prandtl-Reuss flow rule is used. The algo-
rithm includes an implicit iteration loop which corrects
the Euler backward response of global composite strain
to stress relaxation.

Under a combined thermo-mechanical loading, the
prescribed global (composite) strain increment �εc
is considered to consist of a mechanical contribution
�εmech and a thermal contribution �εth = αt�ϑ̄ ,

�εc = �εmech + �εth (B-8)

In the same way, the phase averaged total matrix strain
increment can be split into a mechanical and a thermal
part as,

�〈ε〉(m)
tot = �〈ε〉(m)

mech + α(m)�ϑ̄ (B-9)

For the prescribed global strain increment �εc, the
phase averaged mechanical matrix strain increment
�〈ε〉(m)

mech is obtained from Equations B-8 and B-9
as

�〈ε〉(m)
mech = Ā(m)

t �εc + (
ā(m)

t − α(m)) �ϑ̄ (B-10)

First, the mechanical component of the matrix elas-
tic strain increment �〈ε〉(m)

mech is estimated from
Equation (B-10) for current applied global strain incre-
ment �εc and temperature �ϑ̄ . From the mechanical
part of the matrix strain increment �〈ε〉(m)

mech the total
elastic matrix stress increment �〈σ 〉(m)

tot, el is calculated
by

�〈σ 〉(m)
tot,el = E (m)

t �〈ε〉(m)
mech. (B-11)

This elastic matrix stress increment �〈σ 〉(m)
tot,el is super-

posed onto the instantaneous mechanical matrix stress
state obtained in the previous increment step leading to
current total stress state in the matrix. Here, �〈σ 〉(m)

tot,el
has the meaning of the elastic predictor in the sense of

Euler backward integration. Now, the von Mises yield
criterion is checked for matrix. If the yield criterion is
fulfilled, return mapping operation is carried out pro-
ducing a new stress state 〈σ 〉(m)

tot in the matrix. This ma-
trix stress is the updated stress due to plastic relaxation.
Next, all state quantities E (m)

t , Ā(m)
t , ā(m)

t , 〈ε〉(m), 〈ε〉(m)
el

and 〈ε〉(m)
pl are updated. To make a correction for the

Euler backward response of the composite strain to the
updating of matrix strain and of E (m)

t and Ā(m)
t , further

Euler backward iterations have to be performed in the
current incremental step. For the current (for example,
nth) iteration step, the Euler backward strain �εEB is
obtained as follows

n�εEB = [
Ā(m)

t

]−1 [
�ε

(m)
mech − (

ā(m)
t − α(m)) �ϑ̄

]
(B-12)

The global sub-increment for the next iteration is ob-
tained as

n+1�ε = �εc −
n∑

i=1

n�εEB (B-13)

This Euler backward implicit iteration loop for the cur-
rent global strain increment is repeated until n+1�ε be-
comes smaller than a given tolerance. Then, the same
procedure for the next global strain increment begins.
This successively applied global strain sub-increment
n+1�ε can be considered as a feedback corrector for
the Euler backward response due to relaxation (return
mapping) operation.

For nth iteration, the local fiber stress increment and
global stress increment can be obtained as

n�〈σ 〉(i) = E (i) A(i)
t

n�εEB (B-14)

n�σc = f n�〈σ 〉(i) + (1 − f ) n E (m)
t

n�〈ε〉(m)

(B-15)

〈σ 〉(m)
tot , E (m)

t , Ā(m)
t , n�σc and n�σ (i) as well as n+1�ε

and �εEB are updated in every iteration step of each
increment, the most recent values of which are taken.
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